Skip to main content

sound-effect-waveform-visualization-tinkering

Open In Colab

In [1]:
import matplotlib.pyplot as plt
import numpy as np
import librosa as lr
In [2]:
waveform, samplerate = lr.load("Guns, Mechanism, Air Rifle, Reload, Interior, Distant 01 SND36107.wav", sr=None, mono=False)
waveform.shape
Out[2]:
(2, 425472)
In [3]:
def plot_waveform(waveform):
    px = 1/plt.rcParams["figure.dpi"]
    plt.figure(figsize=(640*px, 40*px))

    frames = lr.util.frame(x=waveform, frame_length=1024, hop_length=1024)
    peaks = np.max(frames, axis=0)

    plt.plot(peaks, linewidth=1, color="black")
    plt.plot(-peaks, linewidth=1, color="black")

    plt.ylim((-1.0, 1.0))
    plt.box(False)

    plt.tick_params(axis="y", which="both", left=False, labelleft=False)
    plt.tick_params(axis="x", which="both", bottom=False, labelbottom=False)
    plt.show()


# Downmix to mono.
x = waveform.mean(axis=0)
plot_waveform(x)

# Apply peak normalization.
x = lr.util.normalize(x)
plot_waveform(x)

# Apply dynamic compression.
x = lr.mu_compress(x) / 255.0
plot_waveform(x)

# Apply peak normalization.
x = lr.util.normalize(x)
plot_waveform(x)
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image

Comments

Comments powered by Disqus